第391章 不讲武德,大道先驱(2/5)
所以费根鲍姆利用计算器按出自己的常数完全属于意外,洛伦茨在发现蝴蝶效应的时候,因为数据近似位的不同,导致了结果出人意料的偏差,这才是常态。
分形虽然混乱中又有秩序,充满奇异的美感,但得到的,始终是近似的结果。
所以不管叶寒怎么解释,车冯都可以用“你算的不对,你的结果还不准确,肯定有问题”来打发。
如此重要的问题本来真的很难给出答案,这显然是个跟连续统假设难度相当的世纪难题。
不过叶寒刚好知道答案!
怎么知道的?
这事用手算肯定不行,计算机模拟如果不用类似重整化的手段,肯定也是有问题的,但是……那说的是算力有限的经典计算机。
叶寒可是有量子计算机的啊。
不是说量子计算机运算速度快,精确度比经典计算机高,就一定能得到准确的结果——分形混沌本身就是由无限方法的极小偏差形成,只要你做了四舍五入了,肯定就是不准确的。
真正原因是,经典计算机是数字式的,不管计算什么,到最后肯定会出现近似的结果;但量子计算机不是数字的,是模拟的啊……
就好像从模拟信号转成数字信号,手机也从砖头大哥大变的小巧玲珑,实现了质的飞跃。
这里刚好相反,当计算机趋向那些越来越困难,越来越尖端的复杂问题,纯代码跳转的数字计算已经应付不了混乱的现实了,但模拟的量子计算机却可以。
因为它不是算的,而是搭建相应的模型模拟的。
数字计算肯定需要四舍五入需要近似,模拟却不需要,它甚至可以没有数字。
经典计算机需要算几万亿年的题目,只要找对了模型,九章和悬铃木几秒钟就能搞出来,甚至可以搞几百几千遍。
这根本不是算力的差距,而是模式的区别。
而对叶寒来说,让量子计算机算点东西,跟按计算器算感觉还真差不多。
本章未完,下一页继续